Functional Programming 101

Introduction to Functional Thinking & Haskell

Vijay Anant & Raghu Ugare
2026 Edition

1/19



Software is Hard

» We keep inventing new tools, but the bugs stay the same.
» Programs are growing faster than our ability to reason about them.
» The Core Problem: Shared mutable state.

» When "Value A" can change anywhere in the jungle, you can’t trust "Value A"
anywhere else.

2/19



The State Trap

» Imperative programming is about "Boxes."

> We name a box, and then we spend the rest of our time changing what is inside
it.

» This hidden state makes systems non-deterministic.
Imperative Spaghetti

()

State

7N

Var{ ¢— Var2

R [+1]
Functional Flow [I] 1] 1f2] Out]

3/19



The Antidote: Haskell

» We use Haskell not just as a language, but as a laboratory for functional
concepts.

» Why? Because Haskell enforces these rules strictly.

> |n other languages, you can do FP. In Haskell, you must.

4/19



Pillar 1: Immutability

» In a functional world, data doesn’t change.
> x =5 is not an assignment; it is a declaration of truth.

> Values vs. Boxes: If data never changes, two parts of the system can never
disagree about what it was.

5/19



Haskell: Definitions, Not Assighments

-— Immutability is the default
val = 10

-- This would be a COMPILE FERROR:
-— val = 11

Once a value is created, it is carved in stone. There is no "set" keyword.

6/19



Pillar 2: Purity (Mapping Sets)

A Pure Function is a relationship between two sets.

Input Output

Crucial: For a given input, it points to exactly one output. Always.

7/19



The Enemy: Side Effects

Args ——) Function — Return Value

E Secretly Changes
World State

» Side effects are hidden dependencies (printing, saving, launching missiles).

> They break the mapping contract.

8/19



Haskell: Types as Contracts

In Haskell, the type signature is a legally binding contract.

-— The signature guarantees:

-— 1. I need two Ints.

-— 2. I will give you an Int.

-- 3. I will DO NOTHING ELSE (no metwork, no disk, no mutation).

add :: Int -> Int -> Int
add x y=x+y

9/19



Pillar 3: Higher-Order Functions

» Functions are values, just like integers.

» We pass "What to do" into standard containers of "How to do it."
C The Pipeline (Composed)

The LOOp (Manual) Mutation at every step Transformation

10/19



The Ripple Effect of Change

Imperative
total = 0
for num in numbers: Functional
if num ) 2 ==
total += num

total = sum (filter even numbers)

total_of_squares = sum (map ("2)

total_squares = 0 < (filter even numbers))

for num in numbers:
if num % 2 ==
total_squares += num * num

In the functional style, the original functions (sum, filter) are untouched. We
compose, we don’t edit.

11/19



Haskell: Functions as Data

We use standard functions to replace imperative loops.

-— map: transform every item
map (¥2) [1, 2, 3]
-- Result: [2, 4, 6]

-— filter: keep what matters

filter (>5) [1..10]
-- Result: [6, 7, 8, 9, 10]

12/19



Pillar 4: Modeling with Types (ADTSs)

We use types to represent the reality of our business logic.

> The Core Idea: We are making illegal states impossible instead of handling
them at runtime.

» You don’t write checks for things that cannot exist.

-— A walue i1s either a Success OR a Failure
data Result = Success String | Failure Error

13/19



Haskell: Pattern Matching

How do we work with these types? We don’t use if-else; we match the shape of the
data.

-- Handling the choice with Pattern Matching
render :: Result -> String
render result = case result of

Success msg -> "Done: " ++ msg

Failure err -> "Error: " ++ show err

14/19



Architecture: Functional Core, Imperative Shell

\ /7
Pure Core

» Functional Core: The pure logic. Deterministic, easy to test.
» Imperative Shell: The messy outside world.

> Strategy: Push side effects to the edge.

15/19



What is FP actually? (Summary)

> It is the shift from Commands (telling the computer how to change memory) to
Expressions (describing what a value is).

» ltis the strict avoidance of Mutation. We don’t change state; we calculate new
states from old ones.

> It is the practice of building systems by Composing simple, predictable
functions into complex ones.

16/19



Resolving the Original Pains

vV v. v Y

“Bugs that appear randomly” — Determinism from purity.

“Works locally, fails in prod” — Explicit inputs and effects.

“Can’t trust value A” — Immutability.

“Concurrency is scary” — No shared mutable state.

17/19



Questions?

18/19



Thank You

Thank Youl!

19/19



