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Software is Hard

» We keep inventing new tools, but the bugs stay the same.
» Programs are growing faster than our ability to reason about them.
» The Core Problem: Shared mutable state.

» When "Value A" can change anywhere in the jungle, you can’t trust "Value A"
anywhere else.
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The State Trap

» Imperative programming is about "Boxes."

> We name a box, and then we spend the rest of our time changing what is inside
it.

» This hidden state makes systems non-deterministic.
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The Antidote: Haskell

» We use Haskell not just as a language, but as a laboratory for functional
concepts.

» Why? Because Haskell enforces these rules strictly.

> |n other languages, you can do FP. In Haskell, you must.
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Pillar 1: Immutability

» In a functional world, data doesn’t change.
> x =5 is not an assignment; it is a declaration of truth.

> Values vs. Boxes: If data never changes, two parts of the system can never
disagree about what it was.
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Haskell: Definitions, Not Assighments

-— Immutability is the default
val = 10

-- This would be a COMPILE FERROR:
-— val = 11

Once a value is created, it is carved in stone. There is no "set" keyword.
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Pillar 2: Purity (Mapping Sets)

A Pure Function is a relationship between two sets.

Input Output

Crucial: For a given input, it points to exactly one output. Always.
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The Enemy: Side Effects

Args ——) Function — Return Value

E Secretly Changes
World State

» Side effects are hidden dependencies (printing, saving, launching missiles).

> They break the mapping contract.
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Haskell: Types as Contracts

In Haskell, the type signature is a legally binding contract.

-— The signature guarantees:

-— 1. I need two Ints.

-— 2. I will give you an Int.

-- 3. I will DO NOTHING ELSE (no metwork, no disk, no mutation).

add :: Int -> Int -> Int
add x y=x+y
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Pillar 3: Higher-Order Functions

» Functions are values, just like integers.

» We pass "What to do" into standard containers of "How to do it."
C The Pipeline (Composed)

The LOOp (Manual) Mutation at every step Transformation
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The Ripple Effect of Change

Imperative
total = 0
for num in numbers: Functional
if num ) 2 ==
total += num

total = sum (filter even numbers)

total_of_squares = sum (map ("2)

total_squares = 0 < (filter even numbers))

for num in numbers:
if num % 2 ==
total_squares += num * num

In the functional style, the original functions (sum, filter) are untouched. We
compose, we don’t edit.
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Haskell: Functions as Data

We use standard functions to replace imperative loops.

-— map: transform every item
map (¥2) [1, 2, 3]
-- Result: [2, 4, 6]

-— filter: keep what matters

filter (>5) [1..10]
-- Result: [6, 7, 8, 9, 10]
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Pillar 4: Modeling with Types (ADTSs)

We use types to represent the reality of our business logic.

> The Core Idea: We are making illegal states impossible instead of handling
them at runtime.

» You don’t write checks for things that cannot exist.

-— A walue i1s either a Success OR a Failure
data Result = Success String | Failure Error
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Haskell: Pattern Matching

How do we work with these types? We don’t use if-else; we match the shape of the
data.

-- Handling the choice with Pattern Matching
render :: Result -> String
render result = case result of

Success msg -> "Done: " ++ msg

Failure err -> "Error: " ++ show err
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Architecture: Functional Core, Imperative Shell

\ /7
Pure Core

» Functional Core: The pure logic. Deterministic, easy to test.
» Imperative Shell: The messy outside world.

> Strategy: Push side effects to the edge.
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What is FP actually? (Summary)

> It is the shift from Commands (telling the computer how to change memory) to
Expressions (describing what a value is).

» ltis the strict avoidance of Mutation. We don’t change state; we calculate new
states from old ones.

> It is the practice of building systems by Composing simple, predictable
functions into complex ones.
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Resolving the Original Pains

vV v. v Y

“Bugs that appear randomly” — Determinism from purity.

“Works locally, fails in prod” — Explicit inputs and effects.

“Can’t trust value A” — Immutability.

“Concurrency is scary” — No shared mutable state.
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Questions?
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Thank You

Thank Youl!
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