
Functional Programming 101
Introduction to Functional Thinking & Haskell

Vijay Anant & Raghu Ugare
2026 Edition

1 / 19



Software is Hard

▶ We keep inventing new tools, but the bugs stay the same.

▶ Programs are growing faster than our ability to reason about them.

▶ The Core Problem: Shared mutable state.

▶ When "Value A" can change anywhere in the jungle, you can’t trust "Value A"
anywhere else.

2 / 19



The State Trap

▶ Imperative programming is about "Boxes."

▶ We name a box, and then we spend the rest of our time changing what is inside
it.

▶ This hidden state makes systems non-deterministic.
Imperative Spaghetti

State

Var 1 Var 2

Functional Flow In f1 f2 Out

3 / 19



The Antidote: Haskell

▶ We use Haskell not just as a language, but as a laboratory for functional
concepts.

▶ Why? Because Haskell enforces these rules strictly.

▶ In other languages, you can do FP. In Haskell, you must.

4 / 19



Pillar 1: Immutability

▶ In a functional world, data doesn’t change.

▶ x = 5 is not an assignment; it is a declaration of truth.

▶ Values vs. Boxes: If data never changes, two parts of the system can never
disagree about what it was.

5 / 19



Haskell: Definitions, Not Assignments

-- Immutability is the default
val = 10

-- This would be a COMPILE ERROR:
-- val = 11

Once a value is created, it is carved in stone. There is no "set" keyword.

6 / 19



Pillar 2: Purity (Mapping Sets)

A Pure Function is a relationship between two sets.

Input Output

f

f

Crucial: For a given input, it points to exactly one output. Always.

7 / 19



The Enemy: Side Effects

FunctionArgs Return Value

World State

Secretly Changes

▶ Side effects are hidden dependencies (printing, saving, launching missiles).

▶ They break the mapping contract.

8 / 19



Haskell: Types as Contracts

In Haskell, the type signature is a legally binding contract.

-- The signature guarantees:
-- 1. I need two Ints.
-- 2. I will give you an Int.
-- 3. I will DO NOTHING ELSE (no network, no disk, no mutation).
add :: Int -> Int -> Int
add x y = x + y

9 / 19



Pillar 3: Higher-Order Functions

▶ Functions are values, just like integers.

▶ We pass "What to do" into standard containers of "How to do it."

The Loop (Manual) Mutation at every step

The Pipeline (Composed)

Transformation

10 / 19



The Ripple Effect of Change

Imperative
total = 0
for num in numbers:

if num % 2 == 0:
total += num

total_squares = 0
for num in numbers:

if num % 2 == 0:
total_squares += num * num

Functional
total = sum (filter even numbers)

total_of_squares = sum (map (^2)
(filter even numbers))↪→

In the functional style, the original functions (sum, filter) are untouched. We
compose, we don’t edit.

11 / 19



Haskell: Functions as Data

We use standard functions to replace imperative loops.

-- map: transform every item
map (*2) [1, 2, 3]
-- Result: [2, 4, 6]

-- filter: keep what matters
filter (>5) [1..10]
-- Result: [6, 7, 8, 9, 10]

12 / 19



Pillar 4: Modeling with Types (ADTs)

We use types to represent the reality of our business logic.

▶ The Core Idea: We are making illegal states impossible instead of handling
them at runtime.

▶ You don’t write checks for things that cannot exist.

-- A value is either a Success OR a Failure
data Result = Success String | Failure Error

13 / 19



Haskell: Pattern Matching

How do we work with these types? We don’t use if-else; we match the shape of the
data.

-- Handling the choice with Pattern Matching
render :: Result -> String
render result = case result of

Success msg -> "Done: " ++ msg
Failure err -> "Error: " ++ show err

14 / 19



Architecture: Functional Core, Imperative Shell

Pure Core

Imperative Shell

▶ Functional Core: The pure logic. Deterministic, easy to test.

▶ Imperative Shell: The messy outside world.

▶ Strategy: Push side effects to the edge.

15 / 19



What is FP actually? (Summary)

▶ It is the shift from Commands (telling the computer how to change memory) to
Expressions (describing what a value is).

▶ It is the strict avoidance of Mutation. We don’t change state; we calculate new
states from old ones.

▶ It is the practice of building systems by Composing simple, predictable
functions into complex ones.

16 / 19



Resolving the Original Pains

▶ “Bugs that appear randomly” → Determinism from purity.

▶ “Works locally, fails in prod” → Explicit inputs and effects.

▶ “Can’t trust value A” → Immutability.

▶ “Concurrency is scary” → No shared mutable state.

17 / 19



Questions?

?

18 / 19



Thank You

Thank You!

19 / 19


